Analysis of Variance

http://datascience.tntlab.org

Module 8
Today’s Agenda

- Why were these Data Camp courses so different from the others?

- Stepping back through Data Camp material on `aov()`, sort of
 - How to run t-tests
 - How to run ANOVA’s, with some new quick-reference guides
 - Additional visualization tools for ANOVA
 - Bridging what you already learned and tidyverse

- Warning: Introducing a lot of packages today
 - A lot more material *not in Data Camp* than usual
 - Summaries at the end
A Bit Different Data Camp

- Did not take a tidyverse approach; lessons were back in base-R
- We don't like to use base-R if we can avoid it
- You see how weird and ugly figure creation is
- We try to avoid base-R (mostly) but sometimes it is not possible

- Why did this happen?
 - ANOVA is specific type of regression anyway (i.e., the general linear model)
 - ANOVA is very uncommon in the broader data science space because it is very limited
 - Most data science folks don't learn ANOVA because they're going to learn regression anyway, and the general linear model is much more flexible

- Psychology (and most other social sciences) are trapped in the 20th-century re: statistical methods (1888: correlation, 1908: t-tests, 1918: variance, 1921: ANOVA)
 - Most of these methods became popular due to computational simplicity
The psych Package

- A set of functions for doing "traditional" psychological tests and analyses
- Includes both CTT and IRT functions
- Includes tools for many traditional psych problems, including factor analysis, ANOVA, item scoring, commonly needed graphs, data simulation, etc.

- The philosophy of psych is very clearly: "here's what people commonly want to do in SPSS or SAS"

- We'll dip into psych a few times today; it's important you know where each function is located; we'll need it more later
 - If you already have a function loaded but don't remember from where, use find()

- One handy function in psych is describe()
- We will also be using a dataset included in psych: sat.act
We Skipped T-Tests

- Because they are code-wise almost the same as ANOVA; still uses formula notation

- `t.test(y~x)` # independent-samples t where y is the DV and x is the IV
- `t.test(y1, y2)` # independent-samples t test where y1 is one group's DV # scores and y2 is the other's
- `t.test(y, mu=0)` # one-sample t-test with specified mu

- Modifications
 - `t.test(y1, y2, paired = T)` # paired-samples t
 - `t.test(y~x, alternative = "greater")` # one-sided t
 - `t.test(y~x, var.equal = T)` # what SPSS does; R defaults to Welch
 - `t.test(y~x, conf.level = 0.9)` # sets alpha explicitly (as 1-alpha)
The ANOVA Framework

- **`aov()`** == ANOVA, part of base-R's "stats package"
 - If you need something you haven't used before, try looking at `library(help="stats")`

- Also uses formula notation
 - `y ~ x == y on x`
 - `y ~ x1 + x2 == y on x1 and x2`
 - `y ~ x1 * x2 == y on x1, x2, and their interaction`
 - `y ~ x1 + x2 + x1:x2 == same thing`

- Homogeneity of variance checks using the `car` package (not base-R)
 - `leveneTest(y, x, center = mean)` or `leveneTest(y~x, center = mean)`

- Sphericity using `mauchly.test()`

- Normality checks using `ggplot/ggpairs` and/or `psych`'s `describeBy()` plus `shapiro.test()`

- Independence assumption should be safe given your research design
A Quick and Dirty Assumption-Checking Visualization

- **yarrr library**
 - Quickly creates a type of RDI plot: Raw data, Description, Inference
 - Useful for checking assumptions when modeling a DV on one to three IVs

- **Raw data**
 - individual jittered points representing raw data

- **Description**
 - a thick line representing the center of the data (by default, the median)
 - a smoothed density plot (by default, a violin plot) representing data density

- **Inference**
 - a rectangle representing an inferential interval (by default, a Bayesian Highest Density Interval, i.e., a credibility interval)

- **Only can be used for up to 3 IVs**
- **Example**
 - `pirateplot(formula = SATQ ~ gender, data = sat.act)`
 - `pirateplot(formula = SATQ ~ gender, data = sat.act, inf.method="ci")`
Fundamental ANOVA Designs with `aov()`

- **Between-subjects**
 - One-way: `model <- aov(y ~ b1)`
 - Two-way: `aov(y ~ b1 * b2)` or `aov(y ~ b1 + b2 + b1:b2)`
 - Three-way: `aov(y ~ b1 * b2 * b3)`
 - With blocking / order effects / covariates: `aov(y ~ z + b1 * b2)`

- **Within-subjects** (be sure to restructure so that each measurement is a row)
 - One factor: `aov(y ~ w1 + Error(SubjectID / w1))`
 - Two factor: `aov(y ~ w1 * w2 + Error(SubjectID / (w1 + w2))`

- **Mixed model**
 - One-way + one factor: `aov(y ~ w1 * b1 + Error(SubjectID / w1))`
 - Two-way + one factor: `aov(y ~ w1 * b1 * b2 + Error(SubjectID / w1) + b1 * b2)`
 - Two-way + two factor: `aov(y ~ w1*w2*b1*b2 + Error(SubjectID / (w1+w2)) + b1*b2)`

- You can also get a variety of diagnostic plots with `plot(model)`
- If you don't get full ANOVA tables, you probably mis-specified something
Bridging tidyverse and `aov()` for Input

- Between-subjects is easy; just clean as normal
- For within-subjects, you usually have data in the following format:
 - One row per case
 - One column per observation within person
- What you need is:
 - One row per observation
 - One identifier column and one data column
- So, to use within-subject `aov()`, you need to restructure using `gather()`
 - Remember this is from `tidyr` (but don't call `tidyr`)

- From a dataset containing 4 observations and a participant number
 - `original <- tibble(casenum=1:100, time1=rnorm(100, 3, .75), time2=rnorm(100, 3, .75), time3=rnorm(100, 3, .75), time4=rnorm(100, 3, .75))`
 - `new <- gather(original, time, score, time1:time4)`
Post-hoc ANOVA Analyses

- Post hoc tests with `pairwise.t.test(y, x, p.adjust="type")`
 - Types are holm, hochberg, hommel, Bonferroni, BH or fdr, BY
 - Remember to look at documentation to double-check what these do, specifically

 - `pairwise.t.test(sat.act$SATQ, factor(sat.act$education), p.adjust.method="bonferroni")` # add paired=T for w/i
 - `with(sat.act, pairwise.t.test(SATQ, factor(education), p.adjust.method="bonferroni"))`

- Use `TukeyHSD(model)` for basic Tukey post-hoc tests (but this does not work with certain more complex models)

- Effect size calculating using `etaSquared()` from the `lsr` package
 - `etaSquared(sat_aov)`
 - `etaSquared(sat_aov, anova=T)` # for eta-sq plus full ANOVA summary table
More Flexible Post-hoc Testing

- If you need post-hoc testing that `TukeyHSD()` won’t do, you may need `glht()` from the `multcomp` package, which is much more flexible
 - `my_df <- sat.act %>% transmute(education = as.factor(education), gender = as.factor(gender), SATQ)`
 - `model <- aov(SATQ ~ education, data=my_df)`
 - `posthocs <- glht(model, linfct=mcp(education="Tukey"))`
 - `summary(posthocs)`

- For post-hocs with multi-way models, you need to define the level condition intersection points of interest yourself, which adds two steps
 - `my_df <- sat.act %>% transmute(education = as.factor(education), gender = as.factor(gender), SATQ, ACT)`
 - `model <- aov(SATQ ~ ACT + education * gender, data=my_df)`
 - `my_df %<>% mutate(condition = interaction(education, gender, sep="x"))`
 - `posthoc_model <- aov(SATQ ~ ACT + condition, data=my_df)`
 - `posthocs <- glht(posthoc_model, linfct=mcp(condition="Tukey"))`
 - `summary(posthocs)`
Bridging `tidyverse` and `aov()` for Output

- Use the `broom` package's `tidy` function
 - Works on many outputs, e.g., model specifications, t-tests
 - Don’t use it on the `summary()` output; use it on the model variable
 - Use this as the first step in a pipe for visualization or further analyses

- Compare
 - `model <- aov(SATQ~factor(education), data=sat.act)`
 - `summary(model)`
 - `tidy(model)`
For Publication-ready Output

- **apaTables library**
 - Creates APA style tables with expected decimal places from various summary tables for MS Word
 - Be sure all variables have the correct type ahead of time
 - Compare
 - `summary(model)`
 - `apa.aov.table(model, conf.level=.95)`
 - `apa.aov.table(model, "../output/output.doc", conf.level=.95)`

- For cell descriptives, use `apa.1way.table()` or `apa.2way.table()`
 - `apa.1way.table(iv=education, dv=SATQ, data=sat.act, filename="output.doc")`

- For ANOVA paired comparisons, use `apa.d.table()` to get effect sizes matrix
 - `apa.d.table(iv=education, dv=ACT, data=sat.act, filename="output.doc")`
Some Added Complexity

- If you have **multiple predictors** and especially **correlated predictors**, you probably need to worry about the way sum of squares is calculated.
- `aov()` uses **Type I Sum of Squares** ("sequential"), which uses sequential entry of terms into the model.
 - `aov(y ~ x1 * x2)` ≠ `aov(y ~ x2 * x1)`
- You usually shouldn’t default to Type I unless you’re specifically interested in sequential, incremental prediction (or only the last term in the model).

- A **Type II Sum of Squares** ("hierarchical") controls for main effects but adds interaction sequentially.
 - Main effects do not control for interactive effects.
- A **Type III Sum of Squares** ("marginal" or "orthogonal") controls for all other effects in the model.
 - Main effects are uninterpretable in the presence of an interaction.
 - This is the default you’re used to if you learned in SPSS.

- If you design is balanced, i.e., all predictors are uncorrelated, these will be equal.
To run ANOVA with Type II (or III) SS, you need to run the general linear model instead and then wrap it in the `Anova()` function from `car` (note: `aov()` is a wrapper around `lm()` too)

Instead of this:
Do this: (first line only once)

```r
anova_model <- aov(y ~ x1 * x2)
```

```r
options(contrasts = c("contr.sum", "contr.poly"))
linear_model <- lm(y ~ x1 * x2)
anova_model <- Anova(linear_model, type="III") # notice capital
```

Compare

```r
my_act <- sat.act %>% transmute(ACT, age, gender=factor(gender), education=factor(education))
summary(aov(ACT ~ gender * education, data=my_act))
summary(aov(ACT ~ gender * education, data=my_act))
Anova(lm(ACT ~ gender * education, data=my_act), type="III")
Anova(lm(ACT ~ gender * education, data=my_act), type="III")
```
Other `aov()` > `lm()` Changes

- Remember from earlier: `aov(y ~ z + b1 * b2)`

- Most helper functions require the `lm`, but it can be a bit weird
 - `etaSquared(linear_model, type=3)`
 # don't forget the type parameter
 - `apa.aov.table(linear_model, type=3)`
 # same problem
 - `library(mosaic)`
 `TukeyHSD(linear_model)`
 # Tukey will throw an error without
 # this library loaded; it wraps itself
Marginal Means Plots

- Use the `lsmeans` library, which creates least-squares means (i.e., predicted marginal means) for any linear model; can be used with any `lm`

- All functions take a model plus the piece of the model you want to look at marginal means for

- `lsmeans(model)` creates marginal ("least-square") means based upon the part of the model you want to visualize or report
 - `linear_model <- lm(ACT ~ gender * education + age, data=my_act)`
 - `anova_model <- Anova(linear_model, type="III")`
 - `lsmeans(linear_model, "education")` # on original linear model, not Anova
 - `lsmeans(linear_model, "education")` # use these means as data for ggplot()`
Planned Contrasts

- Also from the lsmeans package
 - `contrast(model, list(contrast_name = c(-1,1)))`
 - Does not matter if you use `aov()` or `lm()`, because this is a planned test
 (SS "type" is not relevant when you specify precisely what to compare to what)
 - You might need `glht` from `multcomp` depending upon your model

- Example
 - `model <- aov(ACT ~ education, data=my_act)`
 - `model.lsm <- lsmeans(model, "education")`
 - `contrast(model.lsm, list(`
 `hi_v_lo = c(-1,-1,0,0,1,1), # 2 highest v 2 lowest`
 `max_v_min = c(-1,0,0,0,1) # highest v lowest`
 `))`
Example Workflow

1. `my_act <- sat.act %>% transmute(ACT, age, gender=factor(gender), education=factor(education))`
2. `options(contrasts = c("contr.sum", "contr.poly"))`
3. `linear_model <- lm(ACT ~ age + gender * education, data=my_act)`
4. `anova_model <- Anova(linear_model, type="III")`
5. `my_act`%
6. `my_act %<>% mutate(condition = interaction(education, gender, sep="x"))`
7. `posthoc_model <- aov(ACT ~ age + condition, data=my_act)`
8. `posthocs <- glht(posthoc_model, linfct=mcp(condition="Tukey"))`
9. `summary(posthocs)`
10. `mm_df <- tidy(lsmeans(linear_model, "gender", by="education"))`
11. `ggplot(mm_df, aes(x=gender, y=estimate, ymax=conf.high, ymin=conf.low, color=education)) + geom_errorbar(position="dodge")`
8. `ggplot(mm_df, aes(x=gender, y=estimate, group=education, color=education)) + geom_line()`
9. `apa.aov.table(linear_model, conf.level=.95, filename="my_aov.doc")`
Summary of Libraries, Functions, and Datasets

- **Base-R**: `summary()`, `interaction()`
- **Base-R/stats**: `aov()`, `t.test()`, `mauchly.test()`, `TukeyHSD()`, `shapirpairwise.t.test()`, `lm()`, `options()`
- **Base-R/utils**: `citation()`, `find()`
- **tidyverse/tidyr**: `gather()`
- **tidyverse/dplyr**: `transmute()`
- **tidyverse/ggplot2**: `ggplot()`
- **apaTables**: `apa.aov.table()`, `apa.1way.table()`, `apa.2way.table()`, `apa.d.table()`
- **broom**: `tidy()`
- **car**: `leveneTest()`, `Anova()`
- **lsmeans**: `lsmeans()`, `contrast()`
- **lsr**: `etaSquared()`
- **mosaic**: `TukeyHSD()` ###### # wrapper around Base/stats TukeyHSD for use on `lm()` output
- **multcomp**: `glht()`
- **psych**: `describe()`, `describeBy()`, `bfi`, `sat.act`
- **yarrr**: `pirateplot()`