Introduction to Data Science for Social Science

http://datascience.tntlab.org

Module 1
Today’s Agenda

- Syllabus and Course Website
- What is Data Science?
- DataCamp Demonstration
- R and R Studio Demonstration
- Programming Languages: A Decision I Made For You
- Course Organization
Syllabus and Course Website

- http://datascience.tntlab.org
What is Data Science?

- Not really a thing.

- Can refer to:
 - Data-based decision making
 - Exploratory data analysis
 - Predictive modeling
 - Computer-assisted data analysis
 - Programming

- Typical elements:
 - Programming
 - Emphasis on predictive modeling
New Terms Often Refer to Things You Already Do

- Example: “Algorithm”
 - Refers to any step-by-step procedure that can be applied by a computer with a set input and output

- Example algorithm:
 - **Input format:** one vector of integers
 - **Process:**
 1. Create two new variables, both with value zero (0), called \(m \) and \(c \)
 2. For each value in the input vector:
 1. Add that value to \(m \)
 2. Add 1 to \(c \)
 3. Divide \(m \) by \(c \) and return this value as output
 - **Output:** one floating-point number
How is Data Science Different from Statistics?

- A lot of data science can be considered a subdiscipline of statistics, computational statistics. Consider “EM algorithms.”

- In the job market, a lot of people hiring data scientists just want to hire something that can look at existing data and help them make more money.
 - Sometimes these people get saddled with basic data analyst jobs.

- Many data scientists get annoyed if you tell them they are actually statisticians.
How Data Science is New

- I like to define **data science** as the **engineering** task of taking ambiguous, ill-defined, or unclean information, quantifying it, and drawing interesting, relevant, generalizable insights from it.

 - Many of the techniques developed for this purpose can be used to improve existing psychological processes and techniques.

 - Many of these techniques create opportunities to analyze data in ways that social scientists typically don’t, allowing for better triangulation of theory.

- Hold on a minute: **Data engineering** is different still.

- “Data scientist (n.): Person who is better at statistics than any software engineer and better at software engineering than any statistician” – Josh Wills
Pause the Video and...

2. Install R and R Studio on your system.
 - https://cran.r-project.org/bin/windows/base/
 - https://www.rstudio.com/products/rstudio/download/
3. Install Git
R and R Studio Demonstration

- Basic R
 - “Base R” vs. Packages

- R Studio
 - CRAN (Comprehensive R Archive Network)
 - R vs R Studio
 - Panes
 - Workspaces
 - Keyboard Shortcuts
 - Built-in Command Help
 - Git

- “The R Mindset”
A Programmer’s Mindset

- You develop code; you don’t “write” it.
 - A small quantity of code can take a while.

- Don’t learn toolkits. Learn the language.

- Think algorithmically, not procedurally. Inputs, processes, outputs.

- Don’t repeat yourself.
 - Use (and develop) abstractions.

- Create data pipelines, not standalone code.

- Build test code.
Thinking Like a Programmer

- Remember our mean calculation algorithm:
 - **Input**: one vector of integers
 - **Process**:
 1. Create two new variables, both with value zero (0), called m and c
 2. For each value in the input vector:
 1. Add that value to m
 2. Add 1 to c
 3. Divide m by c and return this value as output
 - **Output**: one floating-point number

- Write an algorithm (right now!) to find the largest number in a set of numbers.
A Decision I Made For You

- There are currently two major programming languages for statistical computing: R and Python

- R currently has much greater popularity with the social science crowd and Python with the computer science crowd; however, an applied data scientist will generally need both
 - R is better for statistical analyses and visualization (sort of)
 - Python is better at project-scale, for big data, and for handling text
 - Neither is particularly good for "production"

- For basic tasks, they have similar functionality

- If you end up alt-ac as a data scientist, you will probably, eventually, need to use both
 - Fortunately, these really are languages.